Strain-Dependent Band Splitting and Spin-Flip Dynamics in Monolayer WS 2 .

Nano letters(2023)

引用 2|浏览7
暂无评分
摘要
Triggered by the expanding demands of semiconductor devices, strain engineering of two-dimensional transition metal dichalcogenides (TMDs) has garnered considerable research interest. Through steady-state measurements, strain has been proved in terms of its modulation of electronic energy bands and optoelectronic properties in TMDs. However, the influence of strain on the spin-orbit coupling as well as its related valley excitonic dynamics remains elusive. Here, we demonstrate the effect of strain on the excitonic dynamics of monolayer WS via steady-state fluorescence and transient absorption spectroscopy. Combined with theoretical calculations, we found that tensile strain can reduce the spin-splitting value of the conduction band and lead to transitions between different exciton states via spin-flip mechanism. Our findings suggest that the spin-flip process is strain-dependent, provides a reference for application of valleytronic devices, where tensile strain is usually existing during their design and fabrication.
更多
查看译文
关键词
spin and valley dynamics,strain engineering,transient absorption spectroscopy,transition metal dichalcogenides
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要