Quantum Phases from Competing Van der Waals and Dipole-Dipole Interactions of Rydberg Atoms

PHYSICAL REVIEW LETTERS(2023)

引用 0|浏览1
暂无评分
摘要
Competing short- and long-range interactions represent distinguished ingredients for the formation of complex quantum many-body phases. Their study is hard to realize with conventional quantum simulators. In this regard, Rydberg atoms provide an exception as their excited manifold of states have both densitydensity and exchange interactions whose strength and range can vary considerably. Focusing on onedimensional systems, we leverage the Van der Waals and dipole-dipole interactions of the Rydberg atoms to obtain the zero-temperature phase diagram for a uniform chain and a dimer model. For the uniform chain, we can influence the boundaries between ordered phases and a Luttinger liquid phase. For the dimerized case, a new type of bond-order-density-wave phase is identified. This demonstrates the versatility of the Rydberg platform in studying physics involving short- and long-ranged interactions simultaneously.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要