Chemical Influence of Carbon Interface Layers in Metal/Oxide Resistive Switches.

ACS applied materials & interfaces(2023)

引用 3|浏览10
暂无评分
摘要
Thin layers introduced between a metal electrode and a solid electrolyte can significantly alter the transport of mass and charge at the interfaces and influence the rate of electrode reactions. C films embedded in functional materials can change the chemical properties of the host, thereby altering the functionality of the whole device. Using X-ray spectroscopies, here we demonstrate that the chemical and electronic structures in a representative redox-based resistive switching (RS) system, TaO/Ta, can be tuned by inserting a graphene or ultrathin amorphous C layer. The results of the orbitalwise analyses of synchrotron Ta L-edge, C K-edge, and O K-edge X-ray absorption spectroscopy showed that the C layers between TaO and Ta are significantly oxidized to form CO and, at the same time, oxidize the Ta layers with different degrees of oxidation depending on the distance: full oxidation at the nearest 5 nm Ta and partial oxidation in the next 15 nm Ta. The depth-resolved information on the electronic structure for each layer further revealed a significant modification of the band alignments due to C insertion. Full oxidation of the Ta metal near the C interlayer suggests that the oxygen-vacancy-related valence change memory mechanism for the RS can be suppressed, thereby changing the RS functionalities fundamentally. The knowledge on the origin of C-enhanced surfaces can be applied to other metal/oxide interfaces and used for the advanced design of memristive devices.
更多
查看译文
关键词
Ta2O5/Ta,X-ray absorption spectroscopy,X-ray photoelectron spectroscopy,carbon,resistive switch
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要