Electrospinning Mo-Doped Carbon Nanofibers as an Anode to Simultaneously Boost Bioelectrocatalysis and Extracellular Electron Transfer in Microbial Fuel Cells.

Materials (Basel, Switzerland)(2023)

引用 3|浏览0
暂无评分
摘要
The sluggish electron transfer at the interface of microorganisms and an electrode is a bottleneck of increasing the output power density of microbial fuel cells (MFCs). Mo-doped carbon nanofibers (Mo-CNFs) prepared with electrostatic spinning and high-temperature carbonization are used as an anode in MFCs here. Results clearly indicate that MoC nanoparticles uniformly anchored on carbon nanowire, and Mo-doped anodes could accelerate the electron transfer rate. The Mo-CNF ΙΙ anode delivered a maximal power density of 1287.38 mW m, which was twice that of the unmodified CNFs anode. This fantastic improvement mechanism is attributed to the fact that Mo doped on a unique nanofiber surface could enhance microbial colonization, electrocatalytic activity, and large reaction surface areas, which not only enable direct electron transfer, but also promote flavin-like mediated indirect electron transfer. This work provides new insights into the application of electrospinning technology in MFCs and the preparation of anode materials on a large scale.
更多
查看译文
关键词
Mo-doped carbon nanofibers,electrospinning,interface modification,microbial fuel cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要