Effects of Vanadium Microalloying and Intercritical Annealing on Yield Strength-Ductility Trade-Offs of Medium-Manganese Steels.

Materials (Basel, Switzerland)(2023)

引用 0|浏览5
暂无评分
摘要
In this paper, we investigate the effects of vanadium on the strength and ductility of medium-manganese steels by analyzing the microstructural evolution and strain hardening rates and performing quantitative calculations. Two significantly different contents of vanadium, 0.05 and 0.5 wt.%, were independently added to model steel (0.12C-10Mn) and annealed at different intercritical temperatures. The results show that higher vanadium addition increases the yield strength but decreases the ductility. The maximum yield strength can increase from 849 MPa to 1063 MPa at low temperatures. The model calculations reveal that this is due to a precipitation strengthening increment of up to 148 MPa and a dislocation strengthening increment of 50 MPa caused by a higher quantity of VC precipitates. However, the high density of vanadium carbides leads them to easily segregate at grain boundaries or phase interfaces, which prevents strain from uniformly distributing throughout the phases. This results in stress concentrations which cause a high strain hardening rate in the early stages of loading and a delayed transformation-induced plasticity (TRIP) effect. Additionally, the precipitates decrease the austenite proportion and its carbon concentrations, rendering the TRIP effect unsustainable. Accordingly, the ductility of high vanadium steels is relatively low.
更多
查看译文
关键词
mechanical properties,medium-manganese steel,strain distribution,vanadium carbide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要