Multi-scale CLEAN in hard X-ray solar imaging

CoRR(2023)

引用 0|浏览16
暂无评分
摘要
Multi-scale deconvolution is an ill-posed inverse problem in imaging, with applications ranging from microscopy, through medical imaging, to astronomical remote sensing. In the case of high-energy space telescopes, multi-scale deconvolution algorithms need to account for the peculiar property of native measurements, which are sparse samples of the Fourier transform of the incoming radiation. The present paper proposes a multi-scale version of CLEAN, which is the most popular iterative deconvolution method in Fourier space imaging. Using synthetic data generated according to a simulated but realistic source configuration, we show that this multi-scale version of CLEAN performs better than the original one in terms of accuracy, photometry, and regularization. Further, the application to a data set measured by the NASA Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) shows the ability of multi-scale CLEAN to reconstruct rather complex topographies, characteristic of a real flaring event.
更多
查看译文
关键词
solar imaging,multi-scale,x-ray
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要