Abell 1201: Detection of an Ultramassive Black Hole in a Strong Gravitational Lens

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY(2023)

引用 6|浏览13
暂无评分
摘要
Supermassive black holes (SMBHs) are a key catalyst of galaxy formation and evolution, leading to an observed correlation between SMBH mass $M_{\rm BH}$ and host galaxy velocity dispersion $\sigma_{\rm e}$. Outside the local Universe, measurements of $M_{\rm BH}$ are usually only possible for SMBHs in an active state: limiting sample size and introducing selection biases. Gravitational lensing makes it possible to measure the mass of non-active SMBHs. We present models of the $z=0.169$ galaxy-scale strong lens Abell~1201. A cD galaxy in a galaxy cluster, it has sufficient `external shear' that a magnified image of a $z = 0.451$ background galaxy is projected just $\sim 1$ kpc from the galaxy centre. Using multi-band Hubble Space Telescope imaging and the lens modeling software $\texttt{PyAutoLens}$ we reconstruct the distribution of mass along this line of sight. Bayesian model comparison favours a point mass with $M_{\rm BH} = 3.27 \pm 2.12\times10^{10}\,$M$_{\rm \odot}$ (3$\sigma$ confidence limit); an ultramassive black hole. One model gives a comparable Bayesian evidence without a SMBH, however we argue this model is nonphysical given its base assumptions. This model still provides an upper limit of $M_{\rm BH} \leq 5.3 \times 10^{10}\,$M$_{\rm \odot}$, because a SMBH above this mass deforms the lensed image $\sim 1$ kpc from Abell 1201's centre. This builds on previous work using central images to place upper limits on $M_{\rm BH}$, but is the first to also place a lower limit and without a central image being observed. The success of this method suggests that surveys during the next decade could measure thousands more SMBH masses, and any redshift evolution of the $M_{\rm BH}$--$\sigma_{\rm e}$ relation. Results are available at https://github.com/Jammy2211/autolens_abell_1201.
更多
查看译文
关键词
gravitational lensing: strong, galaxies: evolution, galaxies: formation, quasars: supermassive black holes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要