Synthesis of KH550-Modified Hexagonal Boron Nitride Nanofillers for Improving Thermal Conductivity of Epoxy Nanocomposites.

Polymers(2023)

引用 0|浏览2
暂无评分
摘要
In this work, KH550 (γ-aminopropyl triethoxy silane)-modified hexagonal boron nitride (BN) nanofillers were synthesized through a one-step ball-milling route. Results show that the KH550-modified BN nanofillers synthesized by one-step ball-milling (BM@KH550-BN) exhibit excellent dispersion stability and a high yield of BN nanosheets. Using BM@KH550-BN as fillers for epoxy resin, the thermal conductivity of epoxy nanocomposites increased by 195.7% at 10 wt%, compared to neat epoxy resin. Simultaneously, the storage modulus and glass transition temperature (Tg) of the BM@KH550-BN/epoxy nanocomposite at 10 wt% also increased by 35.6% and 12.4 °C, respectively. The data calculated from the dynamical mechanical analysis show that the BM@KH550-BN nanofillers have a better filler effectiveness and a higher volume fraction of constrained region. The morphology of the fracture surface of the epoxy nanocomposites indicate that the BM@KH550-BN presents a uniform distribution in the epoxy matrix even at 10 wt%. This work guides the convenient preparation of high thermally conductive BN nanofillers, presenting a great application potential in the field of thermally conductive epoxy nanocomposites, which will promote the development of electronic packaging materials.
更多
查看译文
关键词
epoxy,hexagonal boron nitride,polymer matrix nanocomposites,surface modification,thermal conductivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要