Electrolytic Synthesis of White Phosphorus Is Promoted in Oxide-Deficient Molten Salts

ACS CENTRAL SCIENCE(2023)

引用 1|浏览1
暂无评分
摘要
Elemental white phosphorus (P4) is a key feedstock for the entire phosphorus-derived chemicals industry, spanning everything from herbicides to food additives. The electrochemical reduction of phosphate salts could enable the sustainable production of P4; however, such electrosynthesis requires the cleavage of strong, inert P-O bonds. By analogy to the promotion of bond activation in aqueous electrolytes with high proton activity (Bronsted-Lowry acidity), we show that low oxide anion activity (Lux-Flood acidity) enhances P-O bond activation in molten salt electrolytes. We develop electroanalytical tools to quantify the oxide dependence of phosphate reduction, and find that Lux acidic phosphoryl anhydride linkages enable selective, high-efficiency electrosynthesis of P4 at a yield of 95% Faradaic efficiency. These fundamental studies provide a foundation that may enable the development of low-carbon alternatives to legacy carbothermal synthesis of P4.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要