Bifidobacterium longum Administration Diminishes Parasitemia and Inflammation During Plasmodium berghei Infection in Mice

Journal of Inflammation Research(2023)

引用 22|浏览2
暂无评分
摘要
Purpose: During Plasmodium berghei (P. berghei) infection, infected erythrocytes are sequestered in gut tissues through microvascular circulation, leading to dysbiosis. This study aimed to investigate the effect of Lactobacillus casei (L. casei) and Bifidobacterium longum (B. longum) administration on the parasitemia level, gut microbiota composition, expression of cluster of differentiation 103 (CD103) in intestinal dendritic and T regulatory cells (T reg), plasma interferon gamma (IFN-gamma) and tumor necrosis factor (TNF-alpha) levels in P. berghei infected mice. Methods: P. berghei was inoculated intraperitoneally. Infected mice were randomly divided into 5 groups and treated with either L. casei, B. longum, or the combination of both for 5 days before up to 6 days post-infection (p.i). The control group was treated with phosphate-buffered saline (PBS), while uninfected mice were used as negative control. Levels of CD103 and forkhead box P3 (FoxP3) expression were measured by direct immunofluorescense, while plasma IFN-gamma and TNF-alpha level were determined using enzyme-linked immunosorbent assay (ELISA). Results: All treated groups showed an increase in parasitemia from day 2 to day 6 p.i, which was significant at day 2 p.i (p = 0.001), with the group receiving B. longum displaying the lowest degree of parasitemia. Significant reduction in plasma IFN-gamma and TNF-alpha levels was observed in the group receiving B. longum (p = 0.022 and p = 0.026, respectively). The CD103 and FoxP3 expression was highest in the group receiving B. longum (p = 0.01 and p = 0.02, respectively). Conclusion: B. longum showed the best protective effect against Plasmodium infection by reducing the degree of parasitemia and modulating the gut immunity. This provides a basis for further research involving probiotic supplementation in immunity modulation of infectious diseases.
更多
查看译文
关键词
Bifidobacterium longum,inflammation,Plasmodium,sequestration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要