Optical pressure sensing at MHz rates via collisional line broadening of carbon monoxide: uncertainty quantification in reacting flows

Applied Physics B(2023)

引用 44|浏览3
暂无评分
摘要
n optical method for high-speed line-of-sight pressure measurements using infrared laser absorption spectroscopy is presented with detailed uncertainty analysis related to thermodynamic and compositional variation in combustion environments. The technique exploits simultaneous sub-microsecond sensing of temperature and mole fraction to extract pressure from collisional line broadening at MHz rates. A distributed-feedback quantum-cascade laser near 5 m in a bias-tee circuit is used to spectrally resolve multiple rovibrational transitions in the P-branch of the fundamental band of carbon monoxide, which may be seeded or nascent to reacting flows. A comprehensive approach for estimating collisional line broadening in complex combustion gas mixtures is presented. Uncertainty is quantified for a wide range of conditions, reflecting different fuels, equivalence ratios, reaction progress, and combustion modes (deflagration and detonation), which influence gas composition and temperature. The sensor was evaluated for accuracy and precision in both a high-enthalpy shock-tube facility in hydrocarbon–air ignition experiments and behind ethylene–oxygen detonation waves in a detonation-impulse tube facility at temperatures from 1500 to 3000 K and pressures from 0.5 to 10 bar. Pressure measurements were compared to measurements by piezoelectric pressure transducers and to theoretical estimates from normal-shock and Chapman-Jouguet simulations. The high-speed path-integrated optical pressure measurement offers an alternative to traditional electromechanical transducers that are constrained to values at wall boundaries and have proven unreliable in some harsh reacting flows.
更多
查看译文
关键词
optical pressure,carbon monoxide,uncertainty quantification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要