Selective bioelectronic sensing of quinone pharmaceuticals using extracellular electron transfer in Lactiplantibacillus plantarum

Siliang Li, Caroline De Groote Tavares,Joe G. Tolar,Caroline Ajo-Franklin

biorxiv(2023)

引用 0|浏览4
暂无评分
摘要
Redox-active small molecules containing quinone functional groups play important roles as pharmaceuticals, but can be toxic if overdosed. Despite the need for a fast and quantitative method to detect quinone and its derivatives, current sensing strategies are often slow and struggle to differentiate between structural analogs. Leveraging the discovery that microorganisms use certain quinones to perform extracellular electron transfer (EET), we investigated the use of Lactiplantibacillus plantarum as a whole-cell bioelectronic sensor to selectively sense quinone analogs. By tailoring the native EET pathway in L. plantarum, we enabled quantitative quinone sensing of 1,4-dihydroxy-2-naphthoic acid (DHNA) - a gut bifidogenic growth stimulator. We found that L. plantarum could respond to environmental DHNA within seconds, producing electronic signals that cover a 106 concentration range. This sensing capacity was robust in different assay media and allowed for continuous monitoring of DHNA concentrations. In a simulated gut environment containing a mixed pool of quinone derivatives, this tailored EET pathway can selectively sense pharmacologically relevant quinone analogs, such as DHNA and menadione, amongst other structurally similar quinone derivatives. We also developed a multivariate model to describe the mechanism behind this selectivity and found a predictable correlation between quinone physiochemical properties and the corresponding electronic signals. Our work presents a new strategy to selectively sense redox-active molecules using whole-cell bioelectronic sensors and opens the possibility of using probiotic L. plantarum for bioelectronic applications in human health. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要