Interaction of an anticancer benzopyrane derivative with DNA: Biophysical, biochemical, and molecular modeling studies.

Biochimica et biophysica acta. General subjects(2023)

引用 0|浏览15
暂无评分
摘要
BACKGROUND:SIMR1281 is a potent anticancer lead candidate with multi- target activity against several proteins; however, its mechanism of action at the molecular level is not fully understood. Revealing the mechanism and the origin of multitarget activity is important for the rational identification and optimization of multitarget drugs. METHODS:We have used a variety of biophysical (circular dichroism, isothermal titration calorimetry, viscosity, and UV DNA melting), biochemical (topoisomerase I & II assays) and computational (molecular docking and MD simulations) methods to study the interaction of SIMR1281 with duplex DNA structures. RESULTS:The biophysical results revealed that SIMR1281 binds to dsDNA via an intercalation-binding mode with an average binding constant of 3.1 × 106 M-1. This binding mode was confirmed by the topoisomerases' inhibition assays and molecular modeling simulations, which showed the intercalation of the benzopyrane moiety between DNA base pairs, while the remaining moieties (thiazole and phenyl rings) sit in the minor groove and interact with the flanking base pairs adjacent to the intercalation site. CONCLUSIONS:The DNA binding characteristics of SIMR1281, which can disrupt/inhibit DNA function as confirmed by the topoisomerases' inhibition assays, indicate that the observed multi-target activity might originate from ligand intervention at nucleic acids level rather than due to direct interactions with multiple biological targets at the protein level. GENERAL SIGNIFICANCE:The findings of this study could be helpful to guide future optimization of benzopyrane-based ligands for therapeutic purposes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要