Interfacial Engineering Boosts Highly Reversible Zinc Metal for Aqueous Zinc-Ion Batteries.

ACS applied materials & interfaces(2023)

引用 3|浏览8
暂无评分
摘要
Zinc metal is emerging as the promising anode for aqueous Zn-ion batteries. However, corrosion and undesirable Zn dendrite growth limit their practical application in the large-scale energy storage area. Herein, a mountain-valley micro/nanostructure is successfully fabricated on the surface of the Zn anode via a femtosecond-laser filament texturing (FsLFT) technique. Beneficial from the large surface area and spontaneously generated ZnO coating layer, the FsLFT-Zn electrode demonstrates a slow corrosion rate with a current density of 0.62 mA cm and a stable cycle life over 3000 h under 1 mA cm, superior to the original Zn anode. Simulation of the electric fields reveals that the enlarged surface area is responsible for the outstanding performance of the FsLFT-Zn electrode. This study not only proposes a novel strategy to suppress dendrite growth toward highly stable AZIBs but also opens a new avenue to solve similar issues in other metal batteries.
更多
查看译文
关键词
Zn metal anode,aqueous Zn-ion batteries,femtosecond-laser filament texturing,interfacial engineering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要