Inflammasome inhibition protects dopaminergic neurons from α-synuclein pathology in a model of progressive Parkinson’s disease

Journal of neuroinflammation(2023)

引用 5|浏览11
暂无评分
摘要
Neuroinflammation has been suggested as a pathogenetic mechanism contributing to Parkinson’s disease (PD). However, anti-inflammatory treatment strategies have not yet been established as a therapeutic option for PD patients. We have used a human α-synuclein mouse model of progressive PD to examine the anti-inflammatory and neuroprotective effects of inflammasome inhibition on dopaminergic (DA) neurons in the substantia nigra (SN). As the NLRP3 (NOD-, LRR- and pyrin domain-containing 3)-inflammasome is a core interface for both adaptive and innate inflammation and is also highly druggable, we investigated the implications of its inhibition. Repeat administration of MCC950, an inhibitor of NLRP3, in a PD model with ongoing pathology reduced CD4 + and CD8 + T cell infiltration into the SN. Furthermore, the anti-inflammasome treatment mitigated microglial activation and modified the aggregation of α-synuclein protein in DA neurons. MCC950-treated mice showed significantly less neurodegeneration of DA neurons and a reduction in PD-related motor behavior. In summary, early inflammasome inhibition can reduce neuroinflammation and prevent DA cell death in an α-synuclein mouse model for progressive PD. Graphical Abstract
更多
查看译文
关键词
Dopaminergic cells,Inflammasome,MCC950,Microglia,Movement disorder,NLRP3,Neurodegeneration,Neuroinflammation,Parkinson’s disease,T cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要