Development of double network polyurethane-chitosan composite bioinks for soft neural tissue engineering.

Journal of materials chemistry. B(2023)

引用 0|浏览5
暂无评分
摘要
Three-dimensional (3D) bioprinting is an emerging manufacturing technology to print materials with cells for tissue engineering applications. In this study, we prepared novel ternary soft segment-based biodegradable polyurethane (tPU) using waterborne processes. The ternary soft segment included poly(ε-caprolactone) (PCL), polylactide, and poly(3-hydroxybutyrate) (PHB). tPU2 with a soft segment of PCL, poly(D,L-lactide), and PHB in a molar ratio of 0.7 : 0.2 : 0.1 demonstrated lower stiffness (∼2.3 kPa) and a greater tan  value (∼0.64) and maintained good vitality (91.3%) of neural stem cells (NSCs) among various tPUs. The bioprinted tPU2 constructs facilitated cell proliferation (∼200% in 7 days) and neural differentiation of NSCs. Meanwhile, tPU2 formed double network composite hydrogels with gelatin or agarose, and the composite hydrogels showed good biocompatibility and achieved high-resolution (∼80 μm nozzle) bioprinting. In addition, a new series of double network polyurethane-chitosan composite (PUC) hydrogels were developed by combining tPU2 with a self-healing chitosan hydrogel. The PUC hydrogel demonstrated self-healing properties and bioprintability without the need for a post-crosslinking process. The bioprinted PUC composite hydrogel promoted cell proliferation (∼300% in 7 days) and neural differentiation of NSCs better than the tPU2 bioink. This study revealed new formulae of a polyurethane bioink and a polyurethane-chitosan composite bioink for 3D bioprinting and tissue engineering applications.
更多
查看译文
关键词
tissue,polyurethane-chitosan
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要