CLN3 deficiency leads to neurological and metabolic perturbations during early development

LIFE SCIENCE ALLIANCE(2024)

引用 38|浏览24
暂无评分
摘要
Juvenile neuronal ceroid lipofuscinosis (or Batten disease) is an autosomal recessive, rare neurodegenerative disorder that af-fects mainly children above the age of 5 yr and is most commonly caused by mutations in the highly conserved CLN3 gene. Here, we generated cln3 morphants and stable mutant lines in zebrafish. Although neither morphant nor mutant cln3 larvae showed any obvious developmental or morphological defects, behavioral phenotyping of the mutant larvae revealed hyposensitivity to abrupt light changes and hypersensitivity to pro-convulsive drugs. Importantly, in-depth metabolomics and lipidomics analyses revealed significant accumulation of several glycer-ophosphodiesters (GPDs) and cholesteryl esters, and a global decrease in bis(monoacylglycero)phosphate species, two of which (GPDs and bis(monoacylglycero)phosphates) were previously proposed as potential biomarkers for CLN3 disease based on independent studies in other organisms. We could also dem-onstrate GPD accumulation in human-induced pluripotent stem cell-derived cerebral organoids carrying a pathogenic variant for CLN3. Our models revealed that GPDs accumulate at very early stages of life in the absence of functional CLN3 and highlight glycerophosphoinositol and BMP as promising biomarker candi-dates for pre-symptomatic CLN3 disease.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要