PPARγ inhibits small airway remodeling through mediating the polarization homeostasis of alveolar macrophages in COPD.

Sirong He,Ruoyuan Tian,Xinying Zhang, Qingmei Yao,Quan Chen,Bicui Liu, Lele Liao, Yuxuan Gong, Hua Yang,Dan Wang

Clinical immunology (Orlando, Fla.)(2023)

引用 2|浏览3
暂无评分
摘要
The role of Peroxisome Proliferator-Activated Receptor-γ (PPARγ) in alveolar macrophages(AMs) polarization homeostasis is closely associated with airway remodeling in COPD, but the definite mechanism remains unclear. In this study, elevated percentage of M1-type AMs and the expression of functionally cytokines were found in COPD patients and mice, which closely related to the disease severity. PPARγ was markedly up-regulated in M2-type AMs and down-regulated in M1-type AMs, and was associated with disease severity in COPD. Co-cultured with M1- or M2-type AMs promoted the epithelial-mesenchymal transition (EMT) of airway epithelial cells and the proliferation of airway smooth muscle cells. Moreover, airway remodeling and functional damage were observed in both IL4R-/- COPD mice with runaway M1-type AMs polarization and TLR4-/- COPD mice with runaway M2-type AMs polarization. Cigarette extract (CS) or lipopolysaccharide (LPS) stimulated PPARγ-/- AMs showed more serious polarization disorder towards M1, as well as CS induced PPARγ-/- COPD mice, which led to more severe airway inflammation, lung function damage, and airway remodeling. Treatment with PPARγ agonist significantly improved the polarization disorder and function activity in CS/LPS stimulated-AMs by inhibiting the JAK-STAT, MAPK and NF-κB pathways, and alleviated the airway inflammation, restored the lung function and suppressed airway remodeling in CS induced-COPD mice. Our research demonstrates that polarization homeostasis of AMs mediated by PPARγ has the protective effect in airway remodeling, and may be a novel therapeutic target for the intervention and treatment of airway remodeling in COPD.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要