Extensive embryonic patterning without cellular differentiation primes the plant epidermis for efficient post-embryonic stomatal activities.

Developmental cell(2023)

引用 3|浏览8
暂无评分
摘要
Plant leaves feature epidermal stomata that are organized in stereotyped patterns. How does the pattern originate? We provide transcriptomic, imaging, and genetic evidence that Arabidopsis embryos engage known stomatal fate and patterning factors to create regularly spaced stomatal precursor cells. Analysis of embryos from 36 plant species indicates that this trait is widespread among angiosperms. Embryonic stomatal patterning in Arabidopsis is established in three stages: first, broad SPEECHLESS (SPCH) expression; second, coalescence of SPCH and its targets into discrete domains; and third, one round of asymmetric division to create stomatal precursors. Lineage progression is then halted until after germination. We show that the embryonic stomatal pattern enables fast stomatal differentiation and photosynthetic activity upon germination, but it also guides the formation of additional stomata as the leaf expands. In addition, key stomatal regulators are prevented from driving the fate transitions they can induce after germination, identifying stage-specific layers of regulation that control lineage progression during embryogenesis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要