Working memory control dynamics follow principles of spatial computing

Nature Communications(2023)

引用 2|浏览4
暂无评分
摘要
Working memory (WM) allows us to remember and selectively control a limited set of items. Neural evidence suggests it is achieved by interactions between bursts of beta and gamma oscillations. However, it is not clear how oscillations, reflecting coherent activity of millions of neurons, can selectively control individual WM items. Here we propose the novel concept of spatial computing where beta and gamma interactions cause item-specific activity to flow spatially across the network during a task. This way, control-related information such as item order is stored in the spatial activity independent of the detailed recurrent connectivity supporting the item-specific activity itself. The spatial flow is in turn reflected in low-dimensional activity shared by many neurons. We verify these predictions by analyzing local field potentials and neuronal spiking. We hypothesize that spatial computing can facilitate generalization and zero-shot learning by utilizing spatial component as an additional information encoding dimension.
更多
查看译文
关键词
Cognitive control,Working memory,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要