Multi-omics analysis revealed the brain dysfunction induced by energy metabolism in Pelteobagrus vachelli under hypoxia stress.

Ecotoxicology and environmental safety(2023)

引用 3|浏览11
暂无评分
摘要
Hypoxia in water environment has become increasingly frequent and serious due to global warming and environmental pollution. Revealing the molecular mechanism of fish hypoxia adaptation will help to develop markers of environmental pollution caused by hypoxia. Here, we used a multi-omics method to identify the hypoxia-associated mRNA, miRNA, protein, and metabolite involved in various biological processes in Pelteobagrus vachelli brain. The results showed that hypoxia stress caused brain dysfunction by inhibiting energy metabolism. Specifically, the biological processes involved in energy synthesis and energy consumption are inhibited in P. vachelli brain under hypoxia, such as oxidative phosphorylation, carbohydrate metabolism and protein metabolism. Brain dysfunction is mainly manifested as blood-brain barrier injury accompanied by neurodegenerative diseases and autoimmune diseases. In addition, compared with previous studies, we found that P. vachelli has tissue specificity in response to hypoxia stress and the muscle suffers more damage than the brain. This is the first report to the integrated analysis of the transcriptome, miRNAome, proteome, and metabolome in fish brain. Our findings could provide insights into the molecular mechanisms of hypoxia, and the approach could also be applied to other fish species. DATA AVAILABILITY: The raw data of transcriptome has been uploaded to NCBI database (ID: SUB7714154 and SUB7765255). The raw data of proteome has been uploaded to ProteomeXchange database (PXD020425). The raw data of metabolome has been uploaded to Metabolight (ID: MTBLS1888).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要