Phage-based therapy against biofilm producers in gram-negative ESKAPE pathogens.

Microbial pathogenesis(2023)

引用 0|浏览11
暂无评分
摘要
Persistent antibiotic use results in the rise of antimicrobial resistance with limited or no choice for multidrug-resistant (MDR) and extensively drug resistant (XDR) bacteria. This necessitates a need for alternative therapy to effectively combat clinical pathogens that are resistant to last resort antibiotics. The study investigates hospital sewage as a potential source of bacteriophages to control resistant bacterial pathogens. Eighty-one samples were screened for phages against selected clinical pathogens. Totally, 10 phages were isolated against A. baumannii, 5 phages against K. pneumoniae, and 16 phages were obtained against P. aeruginosa. The novel phages were observed to be strain-specific with complete bacterial growth inhibition of up to 6 h as monotherapy without antibiotics. Phage plus colistin combinations reduced the minimum-biofilm eradication concentration of colistin up to 16 folds. Notably, a cocktail of phages exhibited maximum efficacy with complete killing at 0.5-1 μg/ml colistin concentrations. Thus, phages specific to clinical strains have a higher edge in treating nosocomial pathogens with their proven anti-biofilm efficacy. In addition, analysis of phage genomes revealed close phylogenetic relations with phages reported from Europe, China, and other neighbouring countries. This study serves as a reference and can be extended to other antibiotics and phage types to assess optimum synergistic combinations to combat various drug resistant pathogens in the ongoing AMR crisis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要