Modeling, Analysis, and Computational Design of Muscle-driven Soft Robots.

Soft robotics(2023)

引用 0|浏览20
暂无评分
摘要
Muscle driving is a critical actuation mode of soft or flexible robots and plays a key role in the motion of most animals. Although the system development of soft robots has been extensively investigated, the general kinematic modeling of soft bodies and the design methods used for muscle-driven soft robots (MDSRs) are inadequate. With a focus on homogeneous MDSRs, this article presents a framework for kinematic modeling and computational design. Based on continuum mechanics theory, the mechanical characteristics of soft bodies were first described using a deformation gradient tensor and energy density function. The discretized deformation was then depicted using a triangular meshing tool according to the piecewise linear hypothesis. Deformation models of MDSRs caused by external driving points or internal muscle units were established by the constitutive modeling of hyperelastic materials. The computational design of the MDSR was then addressed based on kinematic models and deformation analysis. Algorithms were proposed to infer the design parameters from the target deformation and to determine the optimal muscles. Several MDSRs were developed, and experiments were conducted to verify the effectiveness of the presented models and design algorithms. The computational and experimental results were compared and evaluated using a quantitative index. The presented framework of deformation modeling and computational design of MDSRs can facilitate the design of soft robots with complex deformations, such as humanoid faces.
更多
查看译文
关键词
computational design,deformation modeling,muscle-driven,soft actuation,soft robot
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要