Fabry-Perot Oscillation and Resonance Energy Transfer: Mechanism for Ultralow-Threshold Optically and Electrically Driven Random Laser in Quasi-2D Ruddlesden-Popper Perovskites.

ACS nano(2023)

引用 3|浏览7
暂无评分
摘要
The recently emerged metal-halide hybrid perovskite (MHP) possesses superb optoelectronic features, which have obtained great attention in solid-state lighting, photodetection, and photovoltaic applications. Because of its excellent external quantum efficiency, MHP has promising potential for the manifestation of ultralow threshold optically pumped laser. However, the demonstration of an electrically driven laser remains a challenge because of the vulnerable degradation of perovskite, limited exciton binding energy (E), intensity quenching, and efficiency drop by nonradiative recombinations. In this work, based on the paradigm of integration of Fabry-Perot (F-P) oscillation and resonance energy transfer, we observed an ultralow-threshold (∼250 μWcm) optically pumped random laser from moisture-insensitive mixed dimensional quasi-2D Ruddlesden-Popper phase perovskite microplates. Particularly, we demonstrated an electrically driven multimode laser with a threshold of ∼60 mAcm from quasi-2D RPP by judicious combination of a perovskite/hole transport layer (HTL) and an electron transport layer (ETL) having suitable band alignment and thickness. Additionally, we showed the tunability of lasing modes and color by driving an external electric potential. Performing finite difference time domain (FDTD) simulations, we confirmed the presence of F-P feedback resonance, the light trapping effect at perovskite/ETL, and resonance energy transfer contributing to laser action. Our discovery of an electrically driven laser from MHP opens a useful avenue for developing future optoelectronics.
更多
查看译文
关键词
Fabry−Perot resonance,electrically driven laser,metal-halide perovskite,random laser,resonance energy transfer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要