Low temperature synthesis of carbon dots in microfluidic chip and their application for sensing cefquinome residues in milk.

Biosensors & bioelectronics(2023)

引用 7|浏览17
暂无评分
摘要
In this study, the N-doped carbon dots were continuously synthesized by a facile microfluidic strategy at 90 °C, and their quantum yields reached 19.2%. The characteristics of the obtained carbon dots could be real-time monitored in order to synthesize carbon dots with specific properties. By incorporating the carbon dots into a well-established enzymatic cascade amplification system, an inner filter effect-based fluorescence immunoassay was set up for ultrasensitive detection of cefquinome residues in milk samples. The developed fluorescence immunoassay provided a low detection limit of 0.78 ng/mL, which satisfied the maximum residue limit set by authorities. The fluorescence immunoassay had an 50% inhibition concentration of 0.19 ng/mL against cefquinome and showed a good linear relationship from 0.013 ng/mL to 1.52 ng/mL. While, the average recovery values ranged from 77.8% to 107.8% in spiked milk samples, with relative standard deviations ranging from 6.8% to 10.9%. Compared with conventional methods, the microfluidic chip was more flexible on carbon dots synthesis and the developed fluorescence immunoassay was more sensitive and eco-friendlier for ultra-trace cefquinome residue analysis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要