An extracellular matrix stiffness-induced breast cancer cell transcriptome resembles the transition from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC).

Biochemical and biophysical research communications(2023)

引用 2|浏览4
暂无评分
摘要
Identifying mechanisms driving the transition from ductal carcinoma in situ (DCIS) to invasive breast cancer remains a challenge in breast cancer research. Breast cancer progression is accompanied by remodelling and stiffening of the extracellular matrix, leading to increased proliferation, survival, and migration. Here, we studied stiffness-dependent phenotypes in MCF10CA1a (CA1a) breast cancer cells cultured on hydrogels with stiffness corresponding to normal breast and breast cancer. This revealed a stiffness-associated morphology consistent with acquisition of an invasive phenotype in breast cancer cells. Surprisingly, this strong phenotypic switch was accompanied by relatively modest transcriptome-wide alterations in mRNA levels, as independently quantified using both DNA-microarrays and bulk RNA sequencing. Strikingly, however, the stiffness-dependent alterations in mRNA levels overlapped with those contrasting ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). This supports a role of matrix stiffness in driving the pre-invasive to invasive transition and suggests that mechanosignalling may be a target for prevention of invasive breast cancer.
更多
查看译文
关键词
Breast cancer,DCIS,Matrix stiffness,Mechanotransduction,Transcriptomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要