A DNA-based nanodevice for near-infrared light-controlled drug release and bioimaging

Nano Today(2023)

引用 6|浏览11
暂无评分
摘要
DNA-based nanostructures have shown curative potential in drug delivery and anti-tumor therapy. However, the applications of such systems are limited by the lack of precise control over the space and duration of drug release. Here, we report a near-infrared (NIR) light-guided DNA nanodevice that enables controlled drug release for precise tumor imaging and therapy. The DNA nanodevice is constructed by engineering GC-rich DNA duplexes with an ultraviolet (UV) light labile moiety and further modification onto the surface of upconversion nanoparticles (UCNPs). The chemotherapeutic drug (doxorubicin, Dox) is intercalated into the GC motif of DNA duplexes, where the fluorescence signal of Dox is markedly quenched. Upon NIR light irradiation, the UCNPs acting as energy transducers emit UV light that can break the photolabile moiety in DNA duplexes, resulting in the controlled release of Dox and recovery of their fluorescence signal. We present that this DNA nanodevice is not only able to selectively induce tumor cells apoptosis via NIR light-mediated activation, but also enables in situ imaging and monitoring of drug release. Therefore, this modular strategy opens a window for remotely controlled drug delivery.
更多
查看译文
关键词
DNA nanodevice,Near-infrared light,Upconversion nanoparticles,Drug delivery,Tumor therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要