Dipolar relaxation, conductivity, and polar order in AgCN

P. Lunkenheimer, A. Loidl, G. P. Johari

JOURNAL OF CHEMICAL PHYSICS(2023)

引用 0|浏览14
暂无评分
摘要
By using dielectric spectroscopy in a broad range of temperatures and frequencies, we have investigated dipolar relaxations, the dc conductivity, and the possible occurrence of polar order in AgCN. Conductivity contributions dominate the dielectric response at elevated temperatures and low frequencies, most likely arising from the mobility of the small silver ions. In addition, we observe dipolar relaxation dynamics of the dumbbell-shaped CN- ions, whose temperature dependence follows Arrhenius behavior with a hindering barrier of 0.59 eV. It correlates well with a systematic development of the relaxation dynamics with the cation radius, previously observed in various alkali cyanides. By comparison with the latter, we conclude that AgCN does not exhibit a plastic high-temperature phase with a free rotation of the cyanide ions. Instead, our results indicate that a phase with quadrupolar order, revealing dipolar head-to-tail disorder of the CN- ions, exists at elevated temperatures up to the decomposition temperature, which crosses over to long-range polar order of the CN dipole moments below about 475 K. Dipole ordering was also reported for NaCN and KCN and a comparison with these systems suggests a critical relaxation rate of 10^5 - 10^7 Hz marking the onset of dipolar order in the cyanides. The detected relaxation dynamics in this order-disorder type polar state points to glasslike freezing below about 195 K of a fraction of non-ordered CN dipoles.
更多
查看译文
关键词
dipolar relaxation,conductivity,dipolar order
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要