Baldur: Whole-Proof Generation and Repair with Large Language Models

PROCEEDINGS OF THE 31ST ACM JOINT MEETING EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, ESEC/FSE 2023(2023)

引用 12|浏览82
暂无评分
摘要
Formally verifying software is a highly desirable but labor-intensive task. Recent work has developed methods to automate formal verification using proof assistants, such as Coq and Isabelle/HOL, e.g., by training a model to predict one proof step at a time and using that model to search through the space of possible proofs. This paper introduces a new method to automate formal verification: We use large language models, trained on natural language and code and fine-tuned on proofs, to generate whole proofs at once. We then demonstrate that a model fine-tuned to repair generated proofs further increasing proving power. This paper: (1) Demonstrates that whole-proof generation using transformers is possible and is as effective but more efficient than search-based techniques. (2) Demonstrates that giving the learned model additional context, such as a prior failed proof attempt and the ensuing error message, results in proof repair that further improves automated proof generation. (3) Establishes, together with prior work, a new state of the art for fully automated proof synthesis. We reify our method in a prototype, Baldur, and evaluate it on a benchmark of 6,336 Isabelle/HOL theorems and their proofs, empirically showing the effectiveness of whole-proof generation, repair, and added context. We also show that Baldur complements the state-of-the-art tool, Thor, by automatically generating proofs for an additional 8.7% of the theorems. Together, Baldur and Thor can prove 65.7% of the theorems fully automatically. This paper paves the way for new research into using large language models for automating formal verification.
更多
查看译文
关键词
Proof assistants,proof synthesis,proof repair,machine learning,large language models,automated formal verification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要