Drug screening and biomarker gene investigation in cancer therapy through the human transcriptional regulatory network.

Zihao He,Kai Gao,Lei Dong, Liu Liu, Xinchi Qu, Zhengkai Zou,Yang Wu,Dechao Bu,Jin-Cheng Guo,Yi Zhao

Computational and structural biotechnology journal(2023)

引用 3|浏览22
暂无评分
摘要
A complex and vast biological network regulates all biological functions in the human body in a sophisticated manner, and abnormalities in this network can lead to disease and even cancer. The construction of a high-quality human molecular interaction network is possible with the development of experimental techniques that facilitate the interpretation of the mechanisms of drug treatment for cancer. We collected 11 molecular interaction databases based on experimental sources and constructed a human protein-protein interaction (PPI) network and a human transcriptional regulatory network (HTRN). A random walk-based graph embedding method was used to calculate the diffusion profiles of drugs and cancers, and a pipeline was constructed by using five similarity comparison metrics combined with a rank aggregation algorithm, which can be implemented for drug screening and biomarker gene prediction. Taking NSCLC as an example, curcumin was identified as a potentially promising anticancer drug from 5450 natural small molecules, and combined with differentially expressed genes, survival analysis, and topological ranking, we obtained BIRC5 (survivin), which is both a biomarker for NSCLC and a key target for curcumin. Finally, the binding mode of curcumin and survivin was explored using molecular docking. This work has a guiding significance for antitumor drug screening and the identification of tumor markers.
更多
查看译文
关键词
BIRC5,Curcumin,Drug screening,Molecular docking,Network medicine,Transcriptional regulatory network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要