Ecological risk assessment of tire and road wear particles: A preliminary screening for freshwater sources in Canada.

Environmental pollution (Barking, Essex : 1987)(2023)

引用 0|浏览13
暂无评分
摘要
Abrasion of tires on road surfaces leads to the formation of tire and road wear particles (TRWPs). Approximately 5.9 million tonnes/year of TRWPs are emitted globally, and 12-20% of emissions generated on roads are transmitted into surface waters, where they can release (i.e., leach) chemical compounds that adversely affect aquatic species. To better understand the ecological risk of TRWPs, an acute, probabilistic ecological risk assessment model was developed and applied. This was a screening-level, conceptual ecological risk assessment (ERA) based on secondary data from published scientific studies. The model was demonstrated using British Columbia (BC) Highway 97 (TRWP source) and Kalamalka Lake (receiving water) in Canada, considering two spatial scenarios with varied highway (HWY) lengths and lake volumes. TRWP-derived chemical leachates considered for ERA were aniline, anthracene (ANT), benzo(a)pyrene (B(a)P), fluoranthene (Fl), mercaptobenzothiazole (MBT), and zinc (Zn). An assumed 'total TRWP-derived leachate set' was also assessed, representing all compounds present in tire-derived leachate test solutions. The results indicated the risk to aquatic species in two spatial scenarios. In scenario 1, ecotoxicity risk was high from exposure to TRWP-derived zinc and the total TRWP-derived leachate set. Scenario 2 results indicated acute risk was high from all TRWP-derived chemicals examined, except MBT. This preliminary ecological risk screening provides an early signal that freshwater lakes adjacent to busy highways may be at risk from TRWP contamination, indicating a need for further research. This research is the first ERA of TRWPs in Canada, and the results and methodology provide a foundation for future research and solutions development.
更多
查看译文
关键词
And risk quotient data,Aquatic species,Effects,Exposure,Microplastics,Non-exhaust vehicle emissions,Water contamination
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要