High Mg# of the continental crust explained by calc-alkaline differentiation.

National science review(2022)

引用 2|浏览3
暂无评分
摘要
We used compiled geochemical data to investigate the mechanisms that control Mg# (molar ratio of Mg/(Mg + FeT)) in andesitic arc lavas. We find that andesites from mature continental arcs with crustal thickness of >45 km have systematically higher Mg# than those from oceanic arcs with crustal thickness of <30 km. The elevated Mg# in continental arc lavas results from strong Fe depletion during high-pressure differentiation favored in thick crusts. This proposal is reinforced by our compiled melting/crystallization experiment data. We show that the Mg# characteristics of continental arc lavas match that of the continental crust. These findings suggest that the formation of many high-Mg# andesites and the continental crust may not require slab-melt/peridotite interactions. Instead, the high Mg# of the continental crust can be explained by intracrustal calc-alkaline differentiation processes in magmatic orogens.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要