Adsorption performance of phosphate in water by mixed precursor base geopolymers.

Journal of contaminant hydrology(2023)

引用 4|浏览5
暂无评分
摘要
Design of low-cost and high-removal efficiency phosphate adsorbents is of great significance for the control of eutrophication. In this study, fly ash and metakaolin were used as raw materials to evaluate the capability of phosphate adsorption and to investigate the mechanism of phosphate adsorption. The results of comparing the adsorption effect of geopolymers prepared with different modulus of alkali activator showed that the removal efficiency of phosphate in water at 0.8 M was on average 30.33% higher than 1.2 M. Therefore, FA + MK-0.8 had the maximum removal efficiency of 94.21% for phosphate in water with the maximum adsorption capacity of 36.02 mg/kg. In addition, the adsorption of phosphate could be well fitted by pseudo-second-order model and the process was mainly controlled by film diffusion. The alkali activation process can destroy the octahedral structure of the raw material, so the geopolymer are mainly tetrahedral in structure. Interestingly, new zeolite structures were formed in the mineral crystal phase of FA + MK-0.8, which may facilitate the adsorption of phosphate by geopolymers. Furthermore, the combined FTIR and XRD analysis results indicated that the underlying mechanisms of phosphate adsorption were electrostatic gravitation, ligand exchange, and surface complexation. This research not only synthesizes low-cost and high removal efficiency wastewater purification materials, but also provides a promising application for the elimination and resource utilization of industrial solid waste.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要