In-vitro cytotoxicity and in-vivo antitumor activity of two platinum complexes with 1,3-dimethyl pentyl glycine ligand against breast cancer.

Journal of inorganic biochemistry(2023)

引用 13|浏览1
暂无评分
摘要
Platinum (Pt) derivatives are good candidates for discovering new anti-tumor agents. The present research aims to explore the in-vivo and in-vitro anticancer activity of two platinum complexes with 1,3-dimethyl pentyl glycine ligand (DMPG), [Pt(bpy)(13DMPG)]NO and [Pt(dach)(13DMPG)]NO, against breast cancer cells. The present study was conducted to investigate the cytotoxic potential of these compounds (2-400 μM) compared to standard drugs (cisplatin, oxaliplatin, and carboplatin) on SKBR3 cells using the methyl thiazol-tetrazolium (MTT) assay. Furthermore, the gene expression changes of Bak, Bim, Bcl-2, Caspase-3, and Caspase-9 were carried out by real-time polymerase chain reaction (PCR), and flow cytometric analysis was performed to confirm the cell apoptosis in the presence of the compounds. For more validation, in-vivo anticancer activities of both compounds were investigated against breast transplanted tumors in the BALB/c mice model. The cytotoxic studies by MTT assay revealed the anti-proliferative potential of both derivatives. [Pt(dach)(13DMPG)]NO with an IC value of 15 μM, exhibited higher cytotoxicity against SKBR3 cells as compared to [Pt(bpy)(13DMPG)]NO, oxaliplatin, and carboplatin. Based on the flow cytometry analysis, both derivatives demonstrated apoptotic effects. Also, real-time PCR analysis revealed an up-regulation of Bak, Bim, Bax, Caspases-3, and Caspase-9 genes and a significant reduction in Bcl-2 gene expression in treated cells with both compounds compared to the control group. In-vivo results validated in-vitro analysis and showed the anticancer activity of compounds against breast transplanted tumors in the BALB/c mice model. According to the results, [Pt(dach)(13DMPG)]NO displayed a significant anticancer activity.
更多
查看译文
关键词
Anticancer,Apoptosis,BALB/c,Flow cytometry,Platinum derivatives,Real-time PCR
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要