Generalization of the tensor product selected CI method for molecular excited states

arxiv(2023)

引用 0|浏览5
暂无评分
摘要
In a recent paper (JCTC, 16, 6098 (2020)), we introduced a new approach for accurately approximating full CI ground states in large electronic active-spaces, called Tensor Product Selected CI (TPSCI). In TPSCI, a large orbital active space is first partitioned into disjoint sets (clusters) for which the exact local many-body eigenstates are obtained. Tensor products of these locally correlated many-body states are taken as the basis for the full, global Hilbert space. By folding correlation into the basis states themselves, the low-energy eigenstates become increasingly sparse, creating a more compact selected CI expansion. While we demonstrated that this approach can improve accuracy for a variety of systems, there is even greater potential for applications to excited states, particularly those which have some excitonic character. In this paper, we report on the accuracy of TPSCI for excited states, including a far more efficient implementation in the Julia programming language. In traditional SCI methods that use a Slater determinant basis, accurate excitation energies are obtained only after a linear extrapolation and at a large computational cost. We find that TPSCI with perturbative corrections provides accurate excitation energies for several excited states of various polycyclic aromatic hydrocarbons (PAH) with respect to the extrapolated result (i.e. near exact result). Further, we use TPSCI to report highly accurate estimates of the lowest 31 eigenstates for a tetracene tetramer system with an active space of 40 electrons in 40 orbitals, giving direct access to the initial bright states and the resulting 18 biexcitonic states.
更多
查看译文
关键词
excited states,tensor product,molecular
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要