Identification and characterization of sperm motility-initiating substance-2 gene in internally fertilizing Cynops species.

Haruka Furukawa, Shinya Mito, Jun Nishio,Nozomi Sato, Yoshihiro Ando,Atsushi Tominaga,Fubito Toyama,Yuni Nakauchi,Eriko Takayama-Watanabe,Akihiko Watanabe

Development, growth & differentiation(2023)

引用 0|浏览4
暂无评分
摘要
Sperm motility-initiating substance (SMIS) is an oviductal protein critical for internal fertilization in urodeles. It contributes to the establishment of various reproductive modes in amphibians and is thus a unique research model for the gene evolution of gamete-recognizing ligands that have diversified among animal species. In this study, a paralogous SMIS gene, smis2, was identified via the RNA sequencing of the oviduct of the newt, Cynops pyrrhogaster. The base sequence of the smis2 gene was homologous (˃90%) to that of the original smis gene (smis1), and deduced amino acid sequences of both genes conserved six cysteine residues essential for the cysteine knot motif. Furthermore, smis2 complementary DNA was identified in the oviduct of Cynops ensicauda, and the base substitution patterns also suggested that the smis gene was duplicated in the Salamandridae. Nonsynonymous/synonymous substitution ratios of smis1 and smis2 genes were 0.79 and 2.6, respectively, suggesting that smis2 gene evolution was independently driven by positive selection. Amino acid substitutions were concentrated in the cysteine knot motif of SMIS2. The smis2 gene was expressed in some organs in addition to the oviduct; in contrast, SMIS1 was only expressed in the oviduct. The SMIS2 protein was suggested to be produced and secreted at least in the oviduct and redundantly act in sperm. These results suggest that smis1 plays the original role in the oviduct, whereas smis2 may undergo neofunctionalization, which rarely occurs in gene evolution.
更多
查看译文
关键词
gene evolution,internal fertilization,neofunctionalization,sperm motility,urodela
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要