Divide and Conquer: A Flexible Deep Learning Strategy for Exploring Metabolic Heterogeneity from Mass Spectrometry Imaging Data

ANALYTICAL CHEMISTRY(2023)

引用 4|浏览19
暂无评分
摘要
Research on metabolic heterogeneity provides an important basis for the study of the molecular mechanism of a disease and personalized treatment. The screening of metabolism-related sub-regions that affect disease development is essential for the more focused exploration on disease progress aberrant phenotypes, even carcinogenesis and metastasis. The mass spectrometry imaging (MSI) technique has distinct advantages to reveal the heterogeneity of an organism based on in situ molecular profiles. The challenge of heterogeneous analysis has been to perform an objective identification among biological tissues with different characteristics. By introducing the divide-and-conquer strategy to architecture design and application, we establish here a flexible unsupervised deep learning model, called divide-and-conquer (dc)-DeepMSI, for metabolic heterogeneity analysis from MSI data without prior knowledge of histology. dc-DeepMSI can be used to identify either spatially contiguous regions of interest (ROIs) or spatially sporadic ROIs by designing two specific modes, spat-contig and spat-spor. Comparison results on fetus mouse data demonstrate that the dc-DeepMSI outperforms state-of-the-art MSI segmentation methods. We demonstrate that the novel learning strategy successfully obtained sub-regions that are statistically linked to the invasion status and molecular phenotypes of breast cancer as well as organizing principles during developmental phase.
更多
查看译文
关键词
metabolic heterogeneity,mass spectrometry,flexible deep learning strategy,deep learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要