Factors Affecting the Performance of HJT Silicon Solar Cells in the Intrinsic and Emitter Layers: A Review

TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS(2023)

引用 1|浏览4
暂无评分
摘要
Recently, the focus of solar cell research has shifted from Passivated Emitter and Rear Cell and Passivated Emitter and Rear Locally-diffused solar cells to Heterojunction with Intrinsic Thin Layer solar cells. Compared to the already mass-produced Passivated Emitter and Rear Cell and Passivated Emitter and Rear Locally-diffused solar cells, the passivation with the intrinsic thin layer of amorphous on the wafer surface, the continuous improvement of the emitter thickness, and doping concentration have enabled Heterojunction with Intrinsic Thin Layer solar cells to obtain open-circuit voltage above 750 mV while maintaining a short circuit current density of ~ 40 mA/cm 2 and an Fill Factor of ~ 84%. This leads to a theoretical conversion efficiency of 27.5% (monolithic) to 29% (tandem), which is much higher than the theoretical final conversion efficiency of ~ 24.5% achieved by Passivated Emitter and Rear Cell and Passivated Emitter and Rear Locally-diffused solar cells at a short-circuit voltage of 706 mV. To further approach the theoretical maximum efficiency, improvements, and optimization of the fabrication process, as well as change in material of the front emitter layer and thus the band gap, conductivity, and defect density can be adopted. Efficiencies of up to 28.27% were achieved using hydrogenated nanocrystalline silicon with a bandgap of 1.9 eV as the emitter layer.
更多
查看译文
关键词
HJT,Solar cell,Surface passivation,a-Si,Emitter
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要