Experimental Study of Dynamic Icing Process on a Pitot Probe Model

JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER(2023)

引用 0|浏览3
暂无评分
摘要
An experimental study was conducted to characterize the dynamic ice accretion process over the surface of a typical aeronautic Pitot probe model under different icing conditions. The experimental study was conducted in the Icing Research Tunnel available at Iowa State University. While a high-speed imaging system was used to record the dynamic ice accretion process, a three-dimensional (3D) scanning system was also used to measure the 3D shapes of the ice layers accreted on the test model. While opaque and grainy ice structures were found to accrete mainly along the wedge-shaped lip of the front port and over the front surface of the probe holder under a dry rime icing condition, much more complicated ice structures with transparent and glazy appearance were observed to cover almost entire surface of the Pitot probe under a wet glaze icing condition. While a flower-like ice structure was found to grow rapidly along the front port lip, multiple irregular-shaped ice structures accreted over the probe holder under a mixed icing condition. The characteristics of the icing process under different icing conditions were compared in terms of 3D shapes of the ice structures, the profiles of the accreted ice layers, the ice blockage to the front port, and the total ice mass on the Pitot probe model. The acquired ice accretion images were correlated with the 3D ice shape measurements to elucidate the underlying icing physics.
更多
查看译文
关键词
dynamic icing process,probe
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要