Experimental analysis and optimization of process parameters using response surface methodology of surface nanocomposites fabricated by friction stir processing

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART N-JOURNAL OF NANOMATERIALS NANOENGINEERING AND NANOSYSTEMS(2023)

引用 0|浏览11
暂无评分
摘要
In the present research work, microhardness and ultimate tensile strength of the aluminum based metal surface nanocomposites is studied using response surface methodology. Aluminum alloy 5083 is used as a matrix material, boron carbide nanoparticles as a reinforcement and surface nanocomposites are fabricated using Friction stir processing (FSP). Central composite design (CCD) matrix is used to prepare a design of experiment with three process parameters/factors that is, Tool rotational speed, Tool traverse speed, and Number of passes, having three level each. The nanocomposite fabricated according to design of experiment are analyzed using Response surface methodology (RSM). The developed mathematical model well fitted experimental values and equations are stated by the model to predict the microhardness and ultimate tensile strength of the surface nanocomposites. The predicted value by the model and actual tested values are in close agreement. The developed model predicted that the optimum nanocomposites is to be fabricated at 1300 rpm tool rotational speed with a tool traverse speed of 30 mm/min and no of passes should be three times, in order to achieve enhance ultimate tensile strength and microhardness.
更多
查看译文
关键词
Friction stir processing,response surface methodology,microhardness,nanocomposites
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要