BIG Hype: Best Intervention in Games via Distributed Hypergradient Descent

arxiv(2023)

引用 0|浏览12
暂无评分
摘要
Hierarchical decision making problems, such as bilevel programs and Stackelberg games, are attracting increasing interest in both the engineering and machine learning communities. Yet, existing solution methods lack either convergence guarantees or computational efficiency, due to the absence of smoothness and convexity. In this work, we bridge this gap by designing a first-order hypergradient-based algorithm for Stackelberg games and mathematically establishing its convergence using tools from nonsmooth analysis. To evaluate the hypergradient, namely, the gradient of the upper-level objective, we develop an online scheme that simultaneously computes the lower-level equilibrium and its Jacobian. Crucially, this scheme exploits and preserves the original hierarchical and distributed structure of the problem, which renders it scalable and privacy-preserving. We numerically verify the computational efficiency and scalability of our algorithm on a large-scale hierarchical demand-response model.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要