Identification of MKNK1 and TOP3A as ovarian endometriosis risk-associated genes using integrative genomic analyses and functional experiments.

Computational and structural biotechnology journal(2023)

引用 4|浏览9
暂无评分
摘要
The risk of endometriosis (EM), which is a common complex gynaecological disease, is related to genetic predisposition. However, it is unclear how genetic variants confer the risk of EM. Here, via integrative analysis, we combined large-scale genome-wide association studies (GWAS) summary statistics on EM (N = 245,494) with a blood-based eQTL dataset (N = 1490) to identify EM risk-related genes. For validation, we leveraged two independent eQTL datasets (N = 769) for integration with the GWAS data. Thus, we prioritised 14 genes, including , , and , which showed significant association with susceptibility to EM. We also utilised two independent methods, Multi-marker Analysis of GenoMic Annotation and S-PrediXcan, to further validate the EM risk-associated genes. Moreover, protein-protein interaction network analysis showed the 14 genes were functionally connected. Functional enrichment analyses further demonstrated that these genes were significantly enriched in metabolic and immune-related pathways. Differential gene expression analysis showed that in peripheral blood samples from patients with ovarian EM, , , , and were significantly upregulated, while , , and were significantly downregulated compared with their expression levels in samples from the controls. Immunohistochemistry further confirmed the increased expression levels of and in the ectopic and eutopic endometrium compared to normal endometrium, while HOBX2 was downregulated in the endometrium of women with ovarian EM. Finally, in functional experiments, knockdown inhibited ectopic endometrial stromal cells (EESCs) migration and invasion. knockdown inhibited EESCs proliferation, migration, and invasion, while promoting their apoptosis. Convergent lines of evidence suggested that and are novel EM risk-related genes.
更多
查看译文
关键词
Endometriosis,Expression quantitative trait loci,Genome-wide association study,Integrative genomics analysis,Risk genes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要