gBLUP-GWAS identifies candidate genes, signaling pathways, and putative functional polymorphisms for age at puberty in gilts.

Journal of animal science(2023)

引用 2|浏览12
暂无评分
摘要
Successful development of replacement gilts determines their reproductive longevity and lifetime productivity. Selection for reproductive longevity is challenging due to low heritability and expression late in life. In pigs, age at puberty is the earliest known indicator for reproductive longevity and gilts that reach puberty earlier have a greater probability of producing more lifetime litters. Failure of gilts to reach puberty and display a pubertal estrus is a major reason for early removal of replacement gilts. To identify genomic sources of variation in age at puberty for improving genetic selection for early age at puberty and related traits, gilts (n = 4,986) from a multigeneration population representing commercially available maternal genetic lines were used for a genomic best linear unbiased prediction-based genome-wide association. Twenty-one genome-wide significant single nucleotide polymorphisms (SNP) located on Sus scrofa chromosomes (SSC) 1, 2, 9, and 14 were identified with additive effects ranging from -1.61 to 1.92 d (P < 0.0001 to 0.0671). Novel candidate genes and signaling pathways were identified for age at puberty. The locus on SSC9 (83.7 to 86.7 Mb) was characterized by long range linkage disequilibrium and harbors the AHR transcription factor gene. A second candidate gene on SSC2 (82.7 Mb), ANKRA2, is a corepressor for AHR, suggesting a possible involvement of AHR signaling in regulating pubertal onset in pigs. Putative functional SNP associated with age at puberty in the AHR and ANKRA2 genes were identified. Combined analysis of these SNP showed that an increase in the number of favorable alleles reduced pubertal age by 5.84 ± 1.65 d (P < 0.001). Candidate genes for age at puberty showed pleiotropic effects with other fertility functions such as gonadotropin secretion (FOXD1), follicular development (BMP4), pregnancy (LIF), and litter size (MEF2C). Several candidate genes and signaling pathways identified in this study play a physiological role in the hypothalamic-pituitary-gonadal axis and mechanisms permitting puberty onset. Variants located in or near these genes require further characterization to identify their impact on pubertal onset in gilts. Because age at puberty is an indicator of future reproductive success, these SNP are expected to improve genomic predictions for component traits of sow fertility and lifetime productivity expressed later in life.
更多
查看译文
关键词
aryl hydrocarbon receptor,candidate gene,genome-wide association,genomic best linear unbiased prediction,puberty,swine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要