Novel Sulfonylurea Derivatives as Potential Antimicrobial Agents: Chemical Synthesis, Biological Evaluation, and Computational Study.

Antibiotics (Basel, Switzerland)(2023)

引用 3|浏览11
暂无评分
摘要
Methicillin-resistant (MRSA) is a worldwide health threat and has already tormented humanity during its long history, creating an urgent need for the development of new classes of antibacterial agents. In this study, twenty-one novel sulfonylurea derivatives containing phenyl-5-vinyl and pyrimidinyl-4-aryl moieties were designed and synthesized, among which, nine compounds exhibited inhibitory potencies against Gram-positive bacterial strains: MRSA (Chaoyang clinical isolates), ATCC6538, vancomycin-resistant -309 (VRE-309), and ATCC 6633. Especially, and demonstrated inhibitory activities against the four bacterial strains with minimum inhibitory concentrations (MICs) of 0.78-1.56 μg/mL, and quite a few of other MRSA clinical strains with MICs of 0.78 μg/mL, superior to those of the positive controls vancomycin (MIC of 1 μg/mL) and methicillin (MIC of >200 μg/mL). This is the very first time that sulfonylurea derivatives have been identified as promising inhibitors against different MRSA clinical isolates. In addition, all the MIC values of the synthesized compounds against were greater than 100 μg/mL. Since the reported anti- activities of sulfonylureas were due to acetohydroxyacid synthase (AHAS) inhibition, the molecular target against MRSA for the target sulfonylureas was thought to be a different mode of action. Density functional theory (DFT) calculations were finally performed to understand the structure-activity relationships, based on which, significant differences were observed between their HOMO maps for compounds with strong antibacterial activities and weak anti-MRSA effects. The present results hence provide valuable guidance for the discovery of novel agents to treat bacterial infections, especially against MRSA.
更多
查看译文
关键词
DFT calculation,MRSA,antimicrobial agents,structure–activity relationships,sulfonylurea derivative
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要