Exponential Shortcut to Measurement-Induced Entanglement Phase Transitions

PHYSICAL REVIEW LETTERS(2023)

引用 0|浏览4
暂无评分
摘要
Recently discovered measurement-induced entanglement phase transitions in monitored quantum circuits provide a novel example of far-from-equilibrium quantum criticality. Here, we propose a highly efficient strategy for experimentally accessing these transitions through fluctuations. Instead of directly measuring entanglement entropy, which requires an exponential number of measurements in the subsystem size, our method provides a scalable approach to entanglement transitions in the presence of conserved quantities. In analogy to entanglement entropy and mutual information, we illustrate how bipartite and multipartite fluctuations can both be employed to analyze the measurement-induced criticality. Remarkably, the phase transition can be revealed by measuring fluctuations of only a handful of qubits.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要