Synchronized delivery of dual-drugs for potentiating combination chemotherapy based on smart triple-responsive polymeric micelles.

Biomaterials advances(2023)

引用 2|浏览4
暂无评分
摘要
Here, we combined reversible addition-fragmentation chain transfer (RAFT) polymerization and amide coupling reaction to develop a novel drug-polymer conjugate using poly(AMA-co-IMMA)-b-poly(OEGMA) (termed as PAIPO) as nanocarriers. In order to enhance cellular uptake and obtain subsequent endo/lysosomal escape capacity, the dual-drugs-conjugated prodrug was then coupled with 2,3-dimethylmaleimide (DA) moieties and implanted with imidazolyl groups, respectively. Paclitaxel (PTX) was conjugated to PAIPO via 3,3'-dithiodipropionic acid (DPA) to construct a GSH-responsive moiety, while doxorubicin (DOX) was conjugated to PAIPO via 4-formyl benzoic acid to construct a pH-responsive moiety, which synergistically enabled a synchronized and precise drug delivery. The micelles self-assembled from DOX/PTX@PAIPODA showed an ideal average diameter (163.2-178.3 nm), contributing to passive targeting by the EPR effect. Moreover, a switch of the surface Zeta potential of micelles from steady negatively charged (- 9.74 ± 0.54 mV) at pH 7.4 to positively charged (+ 6.33 ± 1.25 mV) at pH 6.5, facilitated the long blood circulation and cellular endocytosis of micelles, respectively. More importantly, in vitro studies confirmed that DAM(DOXn/PTX) exhibited a strong synergism against tumor cells, and under slightly acidic conditions (pH 6.5), the combination index (CI) values for DAM(DOX1/PTX) on HeLa and Skov-3 cells were estimated to be 0.47 and 0.49 (previous to be 0.50 and 0.56 at pH 7.4), respectively. And in vivo results showed effective tumor accumulation potential, remarkable biosafety, and biocompatibility. Combined, such synchronized delivery approach based on multi-responsive micelles might potentiate the efficacy of combination chemotherapy in clinical cancer treatment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要