Arsenic Exposure Causes Global Changes in the Metalloproteome of Escherichia coli .

Microorganisms(2023)

引用 0|浏览8
暂无评分
摘要
Arsenic is a toxic metalloid with differential biological effects, depending on speciation and concentration. Trivalent arsenic (arsenite, As) is more toxic at lower concentrations than the pentavalent form (arsenate, As). In , the proteins encoded by the operon are the major arsenic detoxification mechanism. Our previous transcriptional analyses indicate broad changes in metal uptake and regulation upon arsenic exposure. Currently, it is not known how arsenic exposure impacts the cellular distribution of other metals. This study examines the metalloproteome of strains with and without the operon in response to sublethal doses of As and As. Size exclusion chromatography coupled with inductively coupled plasma mass spectrometry (SEC-ICPMS) was used to investigate the distribution of five metals (Fe, Mg, Zn, As, and Cu) in proteins and protein complexes under native conditions. Parallel analysis by SEC-UV-Vis spectroscopy monitored the presence of protein cofactors. Together, these data reveal global changes in the metalloproteome, proteome, protein cofactors, and soluble intracellular metal pools in response to arsenic stress in This work brings to light one outcome of metal exposure and suggests that metal toxicity on the cellular level arises from direct and indirect effects.
更多
查看译文
关键词
Escherichia coli,arsenic,copper,inductively coupled plasma mass spectrometry,iron,magnesium,metalloproteome,zinc
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要