Characterization and evaluation of an oral vaccine via nano-carrier for surface immunogenic protein (Sip) delivery against Streptococcus agalactiae infection.

International journal of biological macromolecules(2023)

引用 4|浏览5
暂无评分
摘要
Streptococcus agalactiae causes systemic disease in a variety of wild and farmed fish, resulting in high levels of morbidity and mortality, as well as serious economic losses to the Nile tilapia aquaculture industry. The development of economic and applicable oral vaccines is therefore urgently needed for the sustainable development of Nile tilapia aquaculture. In this study, mesoporous silica nanoparticles (MSNs) were fabricated using sol-gel synthesis technology, and the antigens of surface immunogenic protein (Sip) was loaded into MSNs to develop a nanovaccine MSNs-Sip@HP55. The results showed that the prepared nanovaccine exhibited pH-controlled release, which could survive in the simulated gastric environment (pH 1.5), and release antigens in the simulated intestinal environment at pH 7.4. The nanovaccine could induce innate and adaptive immune responses in Nile tilapia. When the challenge doses were 1.5 × 106, 1.18 × 106, and 0.88 × 106 CFU/mL, the relative protection rates in immunized Nile tilapia were 63.33 %, 64.23 %, and 76.31 %, respectively. Taken together, the nanovaccine exhibited a high antigen utilization rate and was easily administered orally via feeding, which could protect Nile tilapia against challenge with S. agalactiae in large-scale farms. Oral vaccine based on MSNs carriers is a potentially promising strategy for the development of fish vaccines.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要