Spatial Influence of Multifaceted Environmental States on Habitat Quality: A Case Study of the Three Largest Chinese Urban Agglomerations.

Remote Sensing(2023)

引用 1|浏览4
暂无评分
摘要
Habitat structure and quality in the urban agglomeration (UA) are subject to multiple threats and pressures due to ongoing anthropogenic activities and call for comprehensively effective solutions. Many approaches, including cartographic comparison, correlation analysis, the local entropy model, and GeoDetector, were jointly used to clarify the interplay between habitat quality and multiple environmental issues. In response to the overlapped risks of diverse environmental systems, this study presented an integrated research framework to evaluate the spatial influences of multifaceted environmental situations on habitat quality. We conducted the case study in the three largest Chinese UAs: Beijing-Tianjin-Hebei (BTH), Greater Bay Area (GBA), and Yangtze River Delta (YRD). The evaluation results show that the three UAs shared similarities and differences in relationship/impact types and their strengths. In 2015, most of the three UAs' landscapes delivered low-medium magnitudes of habitat quality (score <0.7) and emerged with unevenly severe consequences over space across different environmental aspects, highlighting the importance of maintaining habitat safety. Overall, habitat quality scores were synergistic with NDVI, but antagonistic to surface heat island intensity (SHII), PM2.5 concentrations, and residential support. However, locally structured relationships exhibited geographical complexity and heterogeneity between habitat quality and environmental systems. Regarding GeoDetector evaluation, PM2.5 concentrations in BTH, SHII in GBA, and NDVI in YRD played a dominant role in single-factor and interaction analysis. More importantly, the synergistic effect of various environmental issues on habitats was manifested as mutually enhanced rather than independent or weakened interactive effects, implying the aggravation of compound effects and the necessity of prioritization schemes. This study could provide beneficial insights into the interconnections between habitats' sustainability and multifaceted environmental situations in UAs.
更多
查看译文
关键词
air quality,GeoDetector,habitat quality,thermal environment,urban agglomeration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要