Self-Doping Naphthalene Diimide Conjugated Polymers for Flexible Unipolar n-Type OTFTs.

Advanced materials (Deerfield Beach, Fla.)(2023)

引用 2|浏览13
暂无评分
摘要
The development of high-performance organic thin-film transistor (OTFT) materials is vital for flexible electronics. Numerous OTFTs are so far reported but obtaining high-performance and reliable OTFTs simultaneously for flexible electronics is still challenging. Herein, it is reported that self-doping in conjugated polymer enables high unipolar n-type charge mobility in flexible OTFTs, as well as good operational/ambient stability and bending resistance. New naphthalene diimide (NDI)-conjugated polymers PNDI2T-NM17 and PNDI2T-NM50 with different contents of self-doping groups on their side chains are designed and synthesized. The effects of self-doping on the electronic properties of resulting flexible OTFTs are investigated. The results reveal that the flexible OTFTs based on self-doped PNDI2T-NM17 exhibit unipolar n-type charge-carrier properties and good operational/ambient stability thanks to the appropriate doping level and intermolecular interactions. The charge mobility and on/off ratio are fourfold and four orders of magnitude higher than those of undoped model polymer, respectively. Overall, the proposed self-doping strategy is useful for rationally designing OTFT materials with high semiconducting performance and reliability.
更多
查看译文
关键词
conjugated polymer,n-type organic semiconductor,naphthalene diimide,organic thin-film transistor,self-doping
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要